Crystal structure of leukotriene C₄ synthase responsible for the cysteinyl leukotriene biosynthesis

Hideo Ago¹, Yoshihide Kanaoka², Daisuke Irikura^{1,2}, Bing K. Lam², Tatsuro Shimamura¹, K. Frank Austen², and Masashi Miyano¹

¹Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, ²Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham Women's Hospital, Boston, Massachusetts 02115, USA

Leukotriene C_4 synthase (LTC₄S), which is a membrane integrated protein existing in nuclear membrane, catalyzes the conjugation between leukotriene (LT) A₄ and glutathione (GSH) to form LTC₄. LTC₄ and its metabolites LTD₄ and LTE₄ are components of SRS-A (slow reacting substance of anaphylaxis), and they are called cysteinyl leukotrienes because they have a cysteine moiety commonly. Cysteinyl leukotrienes are lipid mediators involved in smooth muscle constriction and inflammation, particularly in asthma [1]. LTC₄S is the membrane protein responsible for the biosynthesis of cysteinyl leukotrienes and a potential target for drug discovery.

The crystal structure of human LTC₄S was determined at 3.3Å resolution using the recombinant LTC₄S [2]. We established the over-expression system using *Schizosaccharomyces pombe*, and we used the expression system for the preparation of the selenomethionine derivative of LTC₄S with a Leu121Met mutation for the MAD phase calculation as well as the native LTC₄S with a histidine tag. In the crystal structure LTC₄S forms trimer structure, and there is a V-shape substrate binding cleft between two adjacent monomers. GSH, which is one of the substrates and was co-crystallized with LTC₄S, bound at the upper space of the V-shape cleft. The rest space of the V-shape cleft fits aliphatic chain of LTA₄ having two *cis*-double bonds in shape and depth, and was concluded to be the LTA₄ binding site. It would be the reason why LTC₄S discriminates LTA₄ as the other substrate specifically from xenobiotics in contrast to other GSH transfer enzymes with broad substrate specificity. Based on the crystal structure, we proposed the acid-base catalytic mechanism, and Arg31 from a monomer and Arg104 from the other monomer exert the acid and base, respectively. The crystal structure of human membrane integrated protein LTC₄S revealed the details of molecular function of the important enzyme both in the basic life science and in the practical drug discovery.

^[1] F. Austen, K., Additional functions for the cysteinyl leukotrienes recognized through studies of inflammatory processes in null strains. (2007) *Prostaglandins Other Lipid Mediat.* **83**, 182-187.

^[2] Ago, H., Kanaoka, Y., Irikura, D., Lam, B. K., Shimamura, T., Austen, K. F., and Miyano, M., Crystal structure of a human membrane protein involved in cysteinyl leukotrienen biosynthesis. (2007) *Nature* **448**, 609-612.