TOSHIBA CORPORATION

Basic Corporate Data

TOSHIBA CORPORATION Company Name:

Headquarters Address: 1-1, Shibaura 1-chome, Minato-ku, Tokyo, Japan

Founded: July 1875

Common Stock: ¥439,901 million (US\$4,271 million) ¥6,241,623 million (US\$60,598 million) **Total Assets: Net Sales:** ¥6,502.5 billion (US\$63,131 million)

Number of Employees: 200,260

Number of Shares issued: 4,237,600,000 shares

Business Groups

Healthcare Systems & Services Group

Lifestyle Products & Services Group

Community Solutions Group

Electronic Devices & Components Group

Cloud & Solutions Company

TOSHIBA CORPORATION

Introduction to Corporate Research & Development Center

■ Missions and Research Fields

Corporate laboratories are responsible for R&D for future products of Toshiba and Toshiba group companies.

5 Research Fields and Core Technologies in RDC.

Examples of R&D items for LSI and nanotechnology fields

Nanotechnology for LSIs and Data Storage

of Device Cross-section

3D TCAD Simulation

Gate electrode Gate insulating film Drain First Principle Calculation Silicon substrate TCAD Device Simulation

Solid-state Lighting

GaN on Si substrates for more efficient LEDs.

Next-generation SCiB™ **Rechargeable Battery**

New type of Lithium ion batteries with Li-Ti oxide anode materials.

TOSHIBA CORPORATION

Reserch & Development using Synchrotron Radiation

■ High Precision Strain Analysis of Nano-Scale Cells in NAND Memories

X-ray crystal trancation rod (CTR) method reveales small strains in nanoscale memory cells which influence a data retention property.

Strain profile of NAND Cell

Energy Band Profile Analysis of Metal-Semiconductor Interface for LEDs

Hard X-ray Photoelectron Spectroscopy (HAXPES) gives energy band profiles at metal/GaN which are key points for low power consumption.

Ga2p_{3/2} spectra of metal/GaN samples

Energy band profile of metal/p-GaN

■ Quantitative Analysis of Hexavalent Chromium in Products for RoHS Directive

X-ray Absorption Fine Structure (XAFS) method gives a precise ratio of Cr⁶⁺ in chromate conversion coatings with non-destructive.

Cr-K XAFS spectra of CrOx references

Cr6+ ratio of different coating samples